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Fluid Excitation Forces on a
Tightly Packed Tube Bundle
Subjected in Cross-Flow
Fluid excitation forces acting on stationary cylinders with cross-flow are the coupling of
vortex shedding and turbulence buffeting. Those forces are significant in the analytical
framework of fluid-induced vibration in heat exchangers. A bench-scale experimental
setup with an instrumented test bundle is constructed to measure fluid excitation forces
acting on cylinders in the normal triangular tube arrays (P/D¼ 1.28) with water cross-
flow. The lift and drag forces on stationary cylinders are measured directly as a function
of Reynolds number with a developed piezoelectric transducer. The results show that the
properties of fluid excitation forces, to a great extent, largely depend upon the locations
of cylinders within bundle by comparison to the inflow variation. A quasi-periodic mathe-
matical model of fluid excitation forces acting on a circular cylinder is presented for a
tightly packed tube bundle subjected to cross-flow, and the bounded noise theory is
applied between fR¼ 0.01 and fR¼ 1. The developed model is illustrated with lots of iden-
tification results based on the dominant frequency, the intensity of random frequency, and
the amplitude of fluid excitation forces. A second model has been developed for fluid exci-
tation forces between fR¼ 1 and fR¼ 6 with the spectrum index introduced. Although still
preliminary, each model can predict the corresponding forces relatively well.
[DOI: 10.1115/1.4035318]

1 Introduction

Flow-induced vibration of tube arrays is one of the important
reasons for the long-term fretting-wear or fatigue within the steam
generators and other heat exchangers. Generally, the mechanisms
for flow-induced vibration consist of vortex shedding, turbulence
buffeting, and fluid-elastic instability [1]. The structural vibration,
generated by alternating shedding of vortices, is strongly nonlin-
ear structural response with multifrequencies [2]. The turbulence
buffeting can cause comparatively small-amplitude vibrations
under normal conditions among these mechanisms. However, it
finally induces the progressive damage of tubes [3].

In practical cases, the flow-induced vibration problems are too
complicated to distinguish from these mechanisms which can
scarcely exist independently. They can lead to the complex

dynamic behavior of the cross-flow-induced excitation forces and
the fluid–structure system [4]. According to Naudascher and
Rockwell [5], the total cross-flow-induced excitation force, Ftotal,
can be expressed as

Ftotal ¼ FM þ FV þ FT (1)

where FM, FV , and FT represent the motion-dependent, vortex-
induced, and turbulence-induced buffeting force, respectively. If
the cylinders are rigid and fixed, their behavior can become sta-
tionary with cross-flow. Under these circumstances, the total
cross-flow-induced excitation force, Ftotal, can be expressed as

Ftotal ¼ FV0 þ FT0 (2)

where FV0 and FT0 represent the vortex-induced force and the
turbulence-induced buffeting force without tube motion. Three
theories are applied in the motion-dependent fluid force: quasi-
static flow theory, in which the fluid excitation forces acting on
cylinders are attributed to variations in the tube position only [6];
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quasi-steady flow theory, in which fluid excitation forces acting
on cylinders are attributed to variations in tube velocity in addi-
tion to the tube position [7]; and unsteady flow theory, in which
the unsteady fluid excitation forces acting on cylinders have a
high similar characteristics to those acting on cylinders which are
performing periodic oscillations [8]. In fact, no matter what theory
the motion-dependent fluid forces are based on, all of them are
dependent upon deviation from the reference state of steady flow
[9]. The coefficients of the motion-dependent fluid forces are
associated with lots of system parameters. In the quasi-static and
quasi-steady flow theories, the fluid-force coefficients are mainly
dependent of the arrangement, considering the tube velocity is
much smaller than the flow velocity. Thorsen et al. [10] predict
the observed hydrodynamic damping for cross-flow in stationary
incoming flow with an advanced model. They simulate the vortex-
induced vibration of an elastic cylinder in oscillating flow. For a
stationary cylinder, the vortex-induced force is also stationary and
can be represented by the bounded noise processes [11]. When the
flow velocity is dominant compared with the velocity of cylinder
vibration, the unsteady vortex-induced force is equivalent to it act-
ing on a similar stationary cylinder, but with the direction of the
flow approach changed by the velocity of cylinder vibration.
Meanwhile, Zhu et al. [12] develops the model of grid-generated
turbulence based on the bounded noise processes hypothesis.

Fluid excitation forces and the relationships between vortex
shedding and turbulence buffeting have been extensively meas-
ured and analyzed. The fluid excitation forces are connected with
the locations of the cylinders and the conditions of the incoming
flow [13]. The influence of the upstream flow is very significant
for both periodic and stochastic components. The fluctuating
vortex-induced forces for various tube arrays are presented by Pet-
tigrew and Ko [14], and some of the forces are deduced from tube
responses, not from direct force measurement. Once the fluid has
passed the first few rows, fluid excitation forces are not sensitive
to the locations of cylinders any more [15]. The drag and lift
forces obtained by Heinecke and Mohr [16] for square arrays in a
range of Reynolds numbers show that the unsteady lift force is
almost independent of Reynolds number.

Compared with the current mainstream approach about fluid
forces, the quasi-periodic model, which tries to integrate the cou-
pling effects of periodic and stochastic components of fluid forces,
is much more worthy of attention. Especially, the vortex shedding
is always simplified and ignored in the current turbulence model
[17]. The influences of turbulence buffeting on vortex shedding
have been proven by the experimental results with the fluid force
measurement and flow rate measurement [18,19]. The formation
of vortex shedding is obviously affected by turbulence buffeting,
and the similar phenomenon has been founded in the study of
two-phase flow [20]. Unfortunately, there is no suitable quasi-
periodic fluid forces model published in the present studies.

This work aims at understanding the nature of the unexpected
quasi-periodic fluid excitation forces originated by vortex

shedding and turbulence buffeting. An experiment program was
undertaken to measure the motion-independent fluid excitation
forces acting on cylinders in the normal triangular tube arrays sub-
jected to cross-flow. Both of lift force and drag force were meas-
ured directly with a piezoelectric transducer installed on the
cylinders. Based on the theories of the bounded noise and the
spectrum index, experimental expression models for power spec-
tral density (PSD) of the motion-independent fluid excitation
forces were proposed.

2 Experimental Setup

For fluid forces’ measure, researchers have investigated hori-
zontal tube bundle by experimental setup with bisupport, which
need double force transducers working synchronously and hori-
zontal flexible seals such as a rubber tub. Thus, complete synchro-
nization and additional external interference idealization are
required in their experiments. Compared with them, this work is
without that specific requirement. A schematic of the experimen-
tal facility is shown in Fig. 1. The experiment was conducted in a
circulating water channel with an essentially rectangular cross
section (160 mm� 166 mm), which was 3000 mm long to ensure
the inflow steady. The test-section consisted of five rows of cylin-
ders, normal triangular tube arrays with a pitch to diameter ratio
of 1.28 to simulate essentially the flow path in a tightly packed
tube bundle with water cross-flow.

The cylinders were made of aluminum and had qualitatively
similar surface roughness. All tubes in the test-section shared the
same height through the thread adjustment in addition to the test
cylinders, with a length of l¼ 300 mm including the caring zone
(l¼ 155 mm). The upper end of the test cylinder was fixed on a
support with sensor connection. The dynamic lift and drag forces
were measured, using the force measuring device, as shown in
Fig. 2. For tubes, the nature frequency ðf1 ¼ 533:751 HzÞ and
Scruton number ðSc ¼ 72:200Þ are required to be big enough. The
force transducer was fixed to a rigid frame outside the test section
to eliminate transmission of vibration to the transducer with a
fixed support. Since tubes’ resonance frequency must be suffi-
ciently higher than the maximum frequency of interest to avoid
the interference, a stiff system with fixed structure of cantilever
beam was applied. In this way, the fluctuating forces on the cylin-
der were directly sensed by TYPE LC1330 transducer at the upper
end of the cylinder. The data acquisition system, model DH5922,
was used to sample rate of 1000 samples per second, as shown in
Fig. 3.

Tube arrangement is shown in Fig. 4. Different tubes are
denoted by symbols of 1, 2, 3, 4, and 5, considering the fluid
dynamic forces acting on tubes in different positions. For ease of

Fig. 1 Schematic of the experimental set Fig. 2 Schematic of the test-section
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comparison, the Reynolds number is calculated using the gap
velocity, VP, which is given by

VP ¼ V0 �
P

P� D
(3)

where V0 is the free stream velocity. The tests were done over a
wide range of Reynolds numbers, from 1:79� 104 to 5:38� 104.

3 Test Results

3.1 Vortex Shedding. In fact, the research about vortex shed-
ding has already been studied deeply. In this work, the results can
be used as the basic prop theory of the random turbulence model.
Fluid excitation forces induced by vortex shedding are essentially
periodic exciting force, characterized by specific frequencies and
amplitudes. For tube arrays, the reduced frequency, fR, can be
expressed as

fR ¼
fvD

VP
(4)

where fv is the vortex shedding frequency. The reduced frequency
of fluctuating lift force is equivalent to Strouhal number, St. When
the vortex-induced shedding force is not discrete any more, the
coefficients of fluctuating drag and lift forces are defined by the
root mean square value of the drag and lift forces, Cl and Cd

expressed as

Cl ¼
Fl rms

1

2
qDLV2

P

(5)

Cd ¼
Fd rms

1

2
qDLV2

P

(6)

Figure 5 shows the fluctuating lift and drag forces from tube 1
to tube 5 at Re ¼ 3:07� 104. With flow passing through the stag-
gered array, fluctuating fluid forces change from highly organized

to random, and the overall amplitude of fluctuating fluid forces
increases gradually. The organized property of fluctuating fluid
forces is indicative of the orderly alternate vortex shedding.
Highly nonuniform flow or rambling turbulence causes the global
characteristics converted. The phase differences of fluid forces for
the first three rows are shown in Fig. 6. The phase difference on
the early stage of fluid disturbance (the upstream rows) when the
fluid is quite organized is hard to figure out because of the inter-
ference of turbulence. There is no observable interaction of tube
layout.

The characteristic parameters of the vortex-induced shedding
force for five rows of tubes in the lift and drag direction are shown
in Figs. 7 and 8. With the increase of Reynolds number, the lift
force coefficient, Cl, decreases slightly, while there is no signifi-
cant change of the reduced frequency, fD=VP. The fluid forces for
downstream tube are insensitive to the incoming flow conditions,
because of the progress of the measured fluid force coefficient as
a function of the row. For the interior tubes (tubes beyond the
third row), the values of these coefficients become small and
approximately keep constant. The turbulence-induced buffeting
force has played a dominant role in fluid forces. The drag force
coefficient, Cd, is smaller than Cl because of alternate shedding
vortex leading to the dynamic pressure difference between both
sides of the cylinder. Even based on the available experimental
data of the lift force, St for each tube cannot be precisely deter-
mined. Among the downstream tubes, the periodic vortex shed-
ding has no distinct frequency, replaced by the stochastic noise.
Part of the results is estimated based on the main peak above all
the others.

Fig. 3 Schematic of DAS

Fig. 4 Tube arrangement Fig. 5 Fluctuating lift and drag forces
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3.2 Turbulence Buffeting. The function of turbulence-
induced buffeting force is determined by model testing, dimen-
sional analysis, and probabilistic structure dynamic analysis with
a hybrid experimental/analytical integral approach. The mean
square of tube response for model 1, the final form applied to
cross flow in tube arrays, can be expressed as follows [21]:

y2 xð Þ1 ¼
/2

1 xð ÞSF fð ÞJ2
1

64p3f 3
1 M2

1f1

(7)

where SFðf Þ is the auto-power spectral density of the input force
per unit length. The joint acceptance, J2

1 , can be calculated if the
correlation length, k, is known. The data are lacking over a tightly
packed tube bundle, and the correlation length, k, can be
expressed as follows [22]:

k � 0:2P 1þ P

2D

� �
(8)

Fig. 6 Phase difference of fluid forces

Fig. 7 Characteristic parameters of the fluctuating lift force

Fig. 8 Characteristic parameters of the fluctuating drag force

Fig. 9 Median filtering to lift force PSD
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For ease of comparison, researchers in this field have used vari-
ous methods of normalizing excitation force spectrum. Because
the power spectral density (PSD) should be normalized using the
dynamic pressure head, the dimensionless PSD, Se

FðfRÞ, can be
expressed as follows:

Se
F fRð Þ ¼

SF fð Þ
1

2qDV2
P

� �2

VP

D
(9)

where VP is the gap velocity and fR is the reduced frequency.
Equation is general and applicable to tube arrays in cross-flow.
However, the approach is derived with many simplifying assump-
tions, and the most important ones are the following: the turbu-
lence forcing function is homogeneous, isotropic, and stationary
[17].

The noise deviation of the original signal of PSD is obviously
great, which has a great deal of interference on the analysis of
data characteristics. Se

FðfRÞ needs grasp the main characteristics of
the original signal with median filtering [23,24]. Figure 9 shows
the PSD of lift force before and after median filtering for tube 1,
tube 3, and tube 5 at Re ¼ 2:29� 104. The main characteristics of
the random force can be preserved by median filtering, and the
law is becoming much more intuitive.

Figure 10 shows the processed normalized PSD with median
filtering versus the reduced frequency. Se

FðfRÞ of fluid forces is
nearly same when Re is from 1:79� 104 to 5:38� 104. The result

is consistent with Au-Yang et al. [22,25] and Taylor et al. [26].
The data are normalized and put on a common semilog plot. It
shows that the nonconstant Se

FðfRÞ between fR¼ 0.01 and fR¼ 1 is
similar to a unimodal quasi-period pattern in low-frequency area.
Meanwhile, a definite power low decaying trend between fR¼ 1
and fR¼ 6 is spotted with increasing fR in high-frequency area. It
is difficult to fit Se

FðfRÞ through the entire range with a single equa-
tion. Mulcahy [27] has previously presented dimensionless data
using equation as bounding spectra. The empirical equations can
envelop the measured spectra. In the same manner, a simple fit to
the data obtained in this study has been found for the wide band
random component of the spectra.

Considering the existence of quasi-period features of lift force
PSD, a bounded noise function model is applied to fit PSD of lift
force in low-frequency area. The bounded noise is a harmonic
function with a constant amplitude and random frequency [28]. Its
spectral shape can be made to fit a target spectrum, such as the
von Karman spectra of wind turbulence, by adjusting it parame-
ters. Therefore, it can be a reasonable model for the random exci-
tation or response in engineering systems. This model has been
used for a long time in electrical engineering, but it is only
recently used in hydromechanics and structural engineering
[29,30]. The mathematical expression for the noise is

nðtÞ ¼ l sin ðXtþ wÞ (10)

w ¼ rBðtÞ þ v (11)

where nðtÞ is a stationary random process in wide sense with zero
mean; l is the amplitude of bounded noise; X is the averaged cir-
cular frequency of bounded noise; r is the constant representing
intensity of random frequency; and v is random variable uni-
formly distributed in ½0; 2p�. Its covariance function is

c sð Þ ¼ l2

2
exp � r2s

2

� �
cos Xsð Þ (12)

And the variance of the noise is

c 0ð Þ ¼ l2

2
(13)

Its spectral density [31] is

Sn fRð Þ ¼
lrð Þ2

p
1

4 fR � Xð Þ2 þ r4
þ 1

4 fR þ Xð Þ2 þ r4

 !
(14)

In general, the function models with two main forms are applied
to fit PSD of lift force in high-frequency area. They are the expo-
nential function model [32] (y ¼ kax) and the power function
model [33] (y ¼ kxa), both of which having their own theory foun-
dation and use range. Based on the feature of the experiment data
in the current study, the power function model is applied, by anal-
ogy with the spectrum index in Kolmogorov theory [34] in high-
frequency area, between fR¼ 0.01 and fR¼ 1.

According to the experiment results and the bounding value for
Se

FðfRÞ suggested by Au-Yang et al. [22] and Pettigrew and Gor-
man [32,35], an approximate estimate bounding spectra of PSD
can be expressed as

Se
F fRð Þ ¼

lrð Þ2

p
1

4 fR � Xð Þ2 þ r4
þ 1

4 fR þ Xð Þ2 þ r4

 !
for 0:01

< fR < 1

Se
FðfRÞ ¼ k � fR

a for 1 < fR < 6 (16)

In Fig. 11, the measured and predicted PSD are plotted for tube
1, 3, and 5 over a wide range of Reynolds number, Re, fromFig. 10 Processed normalized PSD with median filtering
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1:79� 104 to 5:38� 104. Also, included in the figure are the pre-
dictions of Se

FðfRÞ in the low-frequency region suggested by Oen-
go€uren and Ziada [33], Blevins [21], and Pettigrew and Gorman
[32,35]. Their results can only correspond with part of trends in
low-frequency area and miss the features of peak of PSD. These
plots show an excellent agreement between the result of the meas-
ured data and the equation. Note that the features of the quasi-
period forces are more distinct and more severe in upstream tubes,
and the amplitudes of the maximum of PSD varied are larger than
those in downstream. The chaotic extent of fluctuations increases,
which means the fluctuation is sensitive to the tube position.
Although the predictions of Gorman Pettigrew are basically

consistent with the experimental results, it is not enough to
describe the details of the characteristics of Se

FðfRÞ, especially the
change of the peak shape.

The amplitude of bounded noise, l, is equivalent to the ampli-
tude of the effective fluid forces between fR¼ 0.01 and fR¼ 1 and
can be obtained through the band-pass filter. Normalized excita-
tion force coefficient, similar to Cl and Cd , is defined by the root-
mean-square value of fluid forces in this range. Besides, the equiv-
alent normalized excitation force coefficient, Ce

Frms
, can be

expressed as

Ce
Frms
¼ Frms

1

2
qDLV2

P

VP

D

� �1
2

(17)

where Frms is the root-mean-square value of fluid forces between
fR¼ 0.01 and fR¼ 1. Figure 12 shows the experimental and fitting
results about the equivalent normalized excitation force coeffi-
cient, Ce

Frms
, from tube 1 to tube 5. It can be concluded that the

model fits the actual situation well through the comparison of
experimental data and the fitting parameters. With the enhance-
ment of the disturbance, the overall value of the excitation force
coefficient increases in low-frequency area. However, the excita-
tion force coefficient grows at a snail’s pace in the downstream
tubes, which means the stability of the disturbance of fluid excita-
tion forces with flow through the staggered array.

Fig. 11 Normalized lift force PSD for low-frequency area

Fig. 12 Equivalent normalized excitation force coefficient for
tube positions

Fig. 13 Equivalent power of fluid forces for low-frequency area
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The position and the bandwidth of the noise mainly depends on
X and r. X is determined by vortex shedding frequency, fv, in the
approximate equation, X ¼ fvD=VP. It is a narrow-band process
when r is small and it approaches to white noise when r!1.
An integral equation about the equivalent power is selected to
investigate the tendency of the PSD of fluid forces with the
reduced frequency, excluding the impact of the amplitude of the
effective fluid forces. The equivalent power [36], Epower, can be
expressed as

Epower ¼
ðfR

0

Se
F fRð Þ

Ce
Frms

� �2
dfR

or

ðfR

0

rð Þ2

p
1

4 fR � Xð Þ2 þ r4
þ 1

4 fR þ Xð Þ2 þ r4

 !
dfR (18)

Figure 13 shows the results of Epower versus the reduced fre-
quency for tube 1, 3, and 5. Obviously, the distribution of PSD
with frequency is decided by the number of X (tube 1¼ 0.587,
tube 2¼ 0.529, and tube 3¼ 0.38) and r. r for downstream
increases by roughly an order of magnitude means the increase of
the noise bandwidth. The experimental results and the fitting
parameters match very well. Compared with the results in down-
stream tubes, the shape of Epower for the first row is close to be
perpendicular at St, while the variation of the shapes for tube 3
and tube 5 tends to be gentle and smooth. The power of the fluid
forces for the first row centralizes in the frequency of vortex shed-
ding, which leads to the sudden increase of Epower at St. Mean-
while, the magnitude for the first row is evidently greater than
others between fR ¼ 1 and fR ¼ 6. The frequency position of the
power concentration is dominated by the position of the tube. It is
an interesting phenomenon.

More attention should be paid to the coupling effect of periodic
and stochastic components in low-frequency area, which are,
respectively, dependent upon fvD=VP and r. In addition, l, which
can characterize the amplitude of fluid forces, is taken into
account in this model of Se

FðfRÞ between fR¼ 0.01 and fR¼ 1.
Meanwhile, bounded noise model can accurately represent the
details of power spectral density, which fits well with the experi-
mental data, especially considering about the coupling influence
of periodic and stochastic components of fluid forces.

Figure 14 shows the results of normalized PSD of lift force in
high-frequency area versus the reduced frequency from tube 1 to
tube 5. The spectrum index is applied due to the analogy between
the inertial subrange of the turbulent spectra and the high-

frequency area in the current study. Though no obvious differen-
ces are obtained, the slight increase of the overall value of Se

FðfRÞ
has been gotten in the latter part of high-frequency area. And, the
results are basically consistent with the suggested equation recom-
mended by Oengo€uren and Ziada [33].

For staggered and aligned configurations, it is not clear about
the applicability of bounded noise model. In addition, it is very
important for P/D which may have huge influence on these
parameters of bounded noise. In fact, part of these parameters is
related to Cl. Based on these, the approach for the unification and
simplification of bounded noise could be proposed.

4 Conclusion

A bench-scale equipments were constructed to measure fluid
excitation forces acting on cylinders in the normal triangular tube
arrays (P/D¼ 1.28) with water cross-flow. Both of the periodic
and stochastic forces, originated from vortex shedding and turbu-
lence buffeting, were investigated with the characteristic parame-
ters and mathematical model of fluid excitation forces.

In a tightly packed tube bundle, the influences of Reynolds
numbers, from 1:79� 104 to 5:38� 104, on vortex shedding are
much less conspicuous than the tube position. Meanwhile, the
characteristic parameters of the fluctuating fluid forces become
smaller or approximately constant for the interior tubes.

The periodic component originated from vortex shedding will
gradually disappear with flow through the staggered array, while
the coupling of the periodic and stochastic components of fluid
excitation forces is emerging. It is difficult to make a precise
determination of Strouhal number and fluid force coefficients in a
tightly packed tube bundle.

The bounded noise and the spectrum index are applied for the
characterization of PSD for fluid excitation forces through the
entire frequency range. The quasi-periodic features of fluid excita-
tion forces have been proven with the introduction of r and l.
The results show that the bounded noise model can fit well with
the experimental data, especially considering about the coupling
influence of periodic and stochastic components of fluid forces.

Nomenclature

BðtÞ ¼ unit Wiener process
cðsÞ ¼ covariance function

Ce
Frms
¼ nondimensional root mean of fluctuating force

coefficient
D ¼ tube diameter, m

Epower ¼ nondimensional variance of fluctuating force
coefficient

fR ¼ reduced frequency, Hz
fv ¼ Strouhal peak number, Hz

Fl rms ¼ the root mean of fluid forces, N
L ¼ tube length, m
P ¼ tube pitch, m

SFðf Þ ¼ spectral density of fluctuating force per unit length
(0< f < 1), N2s=m2

Se
FðfRÞ ¼ nondimensional spectral density

St ¼ Strouhal number
l ¼ amplitude of bounded noise

nðtÞ ¼ bounded noise
r ¼ constant representing intensity of random frequency
v ¼ random variable uniformly distributed in ½0; 2p�
X ¼ averaged frequency of bounded noise, Hz
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