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Investigation of Fluid-Elastic
Instability in Tube Arrays at Low
Mass Damping Parameters in
Cross-Flow
Fluid-elastic instability (FEI) is the most dangerous vibration mechanism in tube arrays.
As the research shows in the recent years, the mechanism of FEI turns to be clear, but
threshold prediction in low mass damping parameter (MDP) tube arrays is still not accu-
rate because of the complexity of the instability mechanism. In this work, computational
fluid dynamics (CFD) simulation is first validated by comparison with the water tunnel
experiments in four kinds of tube arrangements and then extended to two-phase flow to
get more data in low MDP range. Using fluid force coefficients calculated by CFD simu-
lation, unsteady modeling of the tube model is established and the critical velocities
match well with experiment and CFD simulation results. The effect of tube arrangement
and Reynolds number on the fluid force coefficients and the predicted critical velocity is
studied according to the unsteady flow theory. The results show that instability critical
velocity of the normal triangular array can be underestimated at MDP lower than 1.
When the frequency ratio (streamwise direction to transverse direction) decreases to
below 0.8 in the rotated triangular array, the streamwise instability occurs earlier than
transverse instability. The methods and conclusions in this paper can be used in FEI
analysis in both streamwise direction and transverse direction.
[DOI: 10.1115/1.4045022]

Introduction

Tube arrays in cross-flow are likely to vibrate coupling with the
fluid, which may cause excessive displacements of the tubes. For
a certain tube array, the main flow excitation mechanisms are as
follows: vortex shedding, turbulence buffeting, and fluid-elastic
instability (FEI) [1,2]. Vortex shedding would not be a problem
unless the tube natural frequency is right in the lock-in region.
Turbulence cannot be avoided through reasonable designs, and
fretting wear damage caused by turbulence at the tube supports
may take many years. However, FEI generally occurs very
abruptly and can cause catastrophic failures in a short period of
time [3].

Fluid-elastic instability may cause large vibration amplitudes
when flow velocity exceeds the critical value (Uc) [4,5]. As such,
many empirical models have been proposed for fluid-elastic insta-
bility [5,6] mainly in the transverse direction. The most widely
used model is the quasi-static model proposed by Connors [7]. In
this model, the critical gap flow velocity (Uc) in the gap is
expressed as

Uc

fnd
¼ K

md
qd2

� �a

(1)

where d is the tube diameter; fn is the natural frequency of the
structure, m is the tube mass per unit length; d is the structural
damping logarithmic decrement, and q is the fluid density. It
represents a very simple relationship between reduced critical
flow velocity Ucr(Uc/fnd) and the mass damping parameter (MDP)
md/qd2.

Price and Pa€ıdoussis proposed the quasi-steady flow model, in
which the fluid-elastic forces on a tube are expressed as functions
of the tube motion consisting of lift and drag coefficients [8,9].
The flow redistribution model of Lever and Weaver assumed the
tube as a single degree-of-freedom system vibrating at the natural
frequency of the center tube [6,10].

However, the fluid force coefficients in quasi-steady flow model
are assumed to be independent of many factors such as Reynolds
number and reduced velocity Ur. The flow channel assumption of
Weaver and Lever is not so compatible in some certain tube arrays
in high turbulence flow. In the unsteady flow theory of Chen and
Tanaka [11–14], the fluid forces are as functions of structure dis-
placements, velocities, and accelerations. As more factors are con-
sidered in unsteady flow theory, more fluid force coefficients are
needed.

Consider a group of tubes vibrating in a flow, as shown in
Fig. 1. The axes of the tubes are parallel to one another and per-
pendicular to the x–y plane. The radius R of each tube is the same,
and the fluid is flowing with a gap flow velocity. The displacement
components of a tube j in the x and y directions are uj and vj,
respectively. The motion-dependent fluid force components acting

Fig. 1 Unsteady flow model
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on tube j in the x and y directions are, respectively, gj and hj given
by the following equation:

gj ¼ �qpR2
Xn

k¼1

ajk
@2uk

@t2
þrjk

@2vk

@t2

� �

þ qU2

x

Xn

k¼1

a0jk
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@t
þr0jk

@vk

@t

� �
þqU2
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� �
(2)
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Xn
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(3)

where q is the fluid density; t is time; w is circular frequency of
tube oscillations; ajk, bjk, rjk, and sjk are added-mass coefficients;
a00jk, b00jk, s00jk, and r00jk are fluid stiffness coefficients; and a0jk, b0jk, r0jk,
and s0jk are fluid damping coefficients.

These theories have ensured tube arrays in fluid-elastic stable
condition when the equipment is designed by rules. However,
there are still some problems to predict the threshold in whole
range of mass damping parameters. Hassan proved that the fluid
coefficient model (unsteady flow model and quasi-steady model)
underestimates the threshold when MDP is smaller than 10, while
the flow redistribution model can overestimate the threshold if
MDP is greater than 10 [6]. But the reason was not explained in
detail. The instability mechanism in this MDP range is quite com-
plex. When MDP is larger than 1, the instability mechanism can
be stiffness-controlled; otherwise, it can be damping-controlled
[11]. In addition, the fluid force coefficient can be affected by
Reynolds number and pitch ratio. However, it is not possible to
define the Re values under which FEI occurs. It is necessary to
find out the exact impact of Re on fluid-elastic instability critical
velocity in different arrays.

The mechanism characteristic in the streamwise direction is
still not clear enough. Fluid-elastic instability appears to occur in
transverse direction before streamwise direction in most cases.
However, the possibility of in-plane FEI in steam generators has
been proved by the tube failures at San Onofre Nuclear Generat-
ing Station in California, U.S. [15]. Hirota et al. [16] studied a tri-
angular array of tubes in air flow and concluded that the ratio of
Connors’ constant in the streamwise to that in the transverse
direction is 1.5. Mureithi and coworkers [17,18] utilized quasi-
steady model to predict in-plane fluid-elastic instability. They
believed that frequency detuning plays an important role in
streamwise fluid-elastic instability. Hassan and Weaver
[4,19,20]provided more insight into this problem by numerical
simulation, and the difference between streamwise and transverse
directions of the natural frequency ratio could have some effects
on the streamwise fluid-elastic instability in the rotated triangular
array.

This paper presents fluid-elastic instability analysis with four
kinds of tube arrays. Water tunnel experiments, unsteady flow
theory modeling, and fluid–structure interaction (FSI) simulation
on target tube arrays were performed. The FSI simulations are first
verified by the experiments and then extended to two-phase flow
to get more data at low MDP range. The effect of tube arrange-
ment and Reynolds number was studied based on unsteady flow
theory. In addition, the effect of the frequency ratio was also stud-
ied by FSI simulation. The overall goal of this research is to get a
better prediction at low MDP and obtain some characteristics of
both the streamwise and transverse instability.

2 Unsteady Theory Modeling

It is not easy to get the fluid force without experiments. In this
work, the unsteady flow fluid force coefficients are obtained
through computational fluid dynamics (CFD) simulation, the same

method as Hassan. If a tube k is assumed to be excited in the x
direction, its displacement in the x direction is given by

ux ¼ u cos xt (4)

The fluid force components acting on tube j in the transverse and
streamwise directions are

FL ¼
1

2
qU2cjk cos xtþ fjkð Þu (5)

FD ¼
1

2
qU2djk cos xtþ wjk

� �
u (6)

where cjk and djk are the fluid force amplitudes, and /jk and wjk

are the phase angles by which the fluid forces acting on tube j lead
to the displacement of tube k

FL ¼ ðqpR2x2ajkþqU2a00jkÞu cos xt–qU2a0jku sin xt (7)

FD ¼ ðqpR2x2sjkþqU2s00jkÞu cos xt–qU2s0jku sin xt (8)

In Eqs. (7) and (8)

a00jk ¼
1

2
cjk cos fjk–

p3

U2
r

ajk (9)

s00jk ¼
1

2
djk cos wjk–

p3

U2
r

sjk (10)

a0jk ¼
1

2
cjk sin fjk (11)

s0jk ¼
1

2
djk sin wjk (12)

a0jk, a00jk, s0jk, and s00jk can be calculated from Eqs. (7)–(12). If tube k
is excited in the y direction, force coefficients b0jk, b00jk, r0jk, and r00jk
can be obtained in the same manner.

Fluid force coefficients depend on tube arrangement, tube pitch,
oscillation amplitude, Reynolds number, and flow velocity. For a
given tube array, fluid force coefficients are functions of oscilla-
tion amplitude, reduced flow velocity, and Reynolds number.
According to the research of Chen, if oscillation amplitude is less
than 70% of the gap, small-amplitude oscillations of the tubes due
to other excitation sources are not expected to affect the threshold
of fluid-elastic instability [13]. In this paper, when calculating the
fluid force coefficients, 0.1 times of tube diameter d, which equals
0.25 times of the gap in this work, is selected to be the excitation
amplitude. In a certain tube array, fluid coefficients can be treated
as functions of Ur and Re. The structure function of tube array
with n tubes can be depicted as

M€x tð Þ þ Kx tð Þ þ C _x tð Þ ¼ 0 (13)

where M ¼ fMsþMf g; C ¼ fCsþCf g; K ¼ fKsþKf g.
Ms is the mass matrix of structure, Ks is the structure stiffness

matrix, Cs is the structure damping matrix, Mf is the added mass
matrix, Kf is the fluid stiffness matrix, and Cf is the fluid damping
matrix

Kf ¼
1

2
qU2 Kxox Kyox

Kxoy Kyoy

" #
(14)

Cf ¼
1

2
qDU

Cxox Cxoy

Cyox Cyoy

" #
(15)

Kxox, Kxoy, Kyox, and Kyoy are the matrices of fluid stiffness coeffi-
cients, and Cxox, Cxoy, Cyox and Cyoy are the matrices of fluid
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damping coefficients. It is not easy to separate function in one
direction out because of coupling between the two directions. The
coupling matrices such as Kyox and Kxoy can exist. If the effect
was neglected or decoupled, the function could be translated only
into the streamwise or transverse function.

3 Experiment Setup

3.1 Water Tunnel Test System. To study FEI characteristic
of tube arrays, a set of water tunnel system with a new type of
noncontact measurement was used, as shown in Fig. 2. Water
pumped from the storage tank flowed through the regulating valve
and the flow meter, then into the steady flow section, and returned
to the tank at last. The centrifugal pump, the regulating valve, and
the flow meter were connected to the control system. The flow
control was realized by the upper computer interface. Test seg-
ment was 550 mm long with a cross section of 255 mm� 330 mm.
The flow rate ranged from 0 to 300 m3/h. The turbulence intensity
of 5% could be set in this inlet region of the test section.

In the experiment, a noncontact measurement was implemented
to obtain the vibration of the tube bundles. A high-speed camera
was used to collect the data through a data acquisition window in
the test section. The installation of the data acquisition setup was
depicted in Fig. 3. The detailed procedure of visual image
processing system and data processing method has been shown by
Tan et al. [21].

3.2 Tubes Array and Tubes. The tube arrays consisted of
two kinds of tubes: flexible ones and fixed ones. The flexible tubes
were set in the central part of the test section. As shown in Fig. 4,
flexible tubes were solid cantilever beams with a slender part
(100 mm long) and a thick part (250 mm long). These kinds of
tubes were widely used in FIV analysis. Fixed tubes were
designed hollow rod with no slender part (Fig. 4(b)). Flexible
tubes were made of aluminum alloy, while fixed tubes were made
of steel. The frequency of the flexible tube in the air was
19.1960.25 Hz, and the fixed tube was 140.662.9 Hz. Free vibra-
tion curve in the air of the flexible tubes is shown in Fig. 5.

There were four kinds of tube arrangement in this experiment
containing normal square (90 deg), rotated square (45 deg), nor-
mal triangular (30 deg), and rotated triangular (60 deg). The pitch
ratio was set as 1.28 and 1.4. Figure 6 shows the four kinds of
tube arrays tested in the experiments. The tube response was

obtained through visual image processing system method. Tube
13 in Fig. 6(a) and tube 12 in Figs. 6(b)–6(d) would be analyzed.

4 Fluid–Structure Interaction Simulation

Fluid–structure interaction simulation can extend the results to
larger MDP range below 10. Meanwhile, CFD results can also
give more information about the flow field which can be helpful
in FEI analysis. In this work, 2D-models were established to fulfill
FEI study in water and two-phase flow condition.

4.1 Dynamic Tube Model. As is depicted in Fig. 7, the tube
was treated as a rigid body and will vibrate only in two directions.
The tube motion could only be translational in X and Y directions.
It was based on a hypothesis that the tubes were excited in a statis-
tical uniform state. The tube array was the same as in Fig. 6. The
natural frequency can be controlled by setting the value of
the stiffness (Kx and Ky) in each direction. The damping coeffi-
cient was set as 0.0002, which was obtained from the test in
Sec. 3.2. The fluid dynamics model is described in detail by
Hassan et al. [22]. FSI was handled by further casting the govern-
ing Reynolds average Navier–Stokes equations in an arbitrary
Lagrangian–Eulerian form, which accommodated moving

Fig. 2 Water tunnel system

Fig. 3 Data acquisition system
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boundaries and any subsequent deformation of the underlying
dynamic mesh. To include the influence of turbulent mixing, the
shear stress transport turbulence model is used. And the two-
phase model was modeled with a homogeneous phase model in
this work.

4.2 Fluid-Elastic Instability Simulation. The tube arrays in
this simulation were the same as those that had been depicted in
the experiment setup. The fluids were set as water and air–water.
The two-phase flow with void fractions of 0.5 and 0.8 was
modeled with a homogeneous phase model in tube arrays with
P/d¼ 1.4.

The tube responses were monitored. The models used in CFD
simulation were shown in Fig. 8. The flexible tubes in the dashed
line were tube arrays in Fig. 6. Average velocity inlet with 5% tur-
bulence intensity and pressure outlet were adopted in this work.
As the tube frequency is only 19 Hz, a time-step resolution based
on T/n (n> 200) would be appropriate for the results. The inlet
velocities range from 0.1 m/s until the velocity when fluid-elastic
instability happened.

Independence of grids check was performed at inlet velocity
U¼ 0.3 m/s in a normal square array. Lift coefficients CL, drag
coefficients Cd, and tube displacements were shown in Fig. 9. The
model of 0.72� 106 grids showed almost the same accuracy as
2.3� 106 grids model. Considering the calculation scale and accu-
racy, the model of 0.72� 106 grids were chosen as the calculation
model to fulfill the study.

4.3 Fluid Force Coefficients Calculation. Same calculation
models as Fig. 8 were built in CFD simulation in this section.
Tube numbers in the unit tube cell is shown in Fig. 10. The fluid
was chosen as water. The turbulence model, time–step, and grids
were all the same as in the former section. Calculation of fluid

force coefficients was needed to obtain the forces acting on the
tubes. As is depicted previously, the central tube was excited as
Eq. (6). The excitation amplitude u was 0.1d. The forces of the
surrounding tubes were monitored.

According to the unsteady flow theory, fluid force coefficients
were functions of Re and tube arrangement. Re was set as the
same in one group of reduced flow velocities. In order to study the
influence of Re, Re values were chosen as 12,500 and 18,250
based on gap velocities. The inlet velocities differed in various
tube arrays, which were shown in Table 1.

Fig. 4 Test tubes: (a) flexible tube and (b) fixed tube

Fig. 5 Free vibration curve

Fig. 6 Flexible tube arrays: (a) square array, (b) rotated square
array, and (c) triangular array, and (d) rotated triangular array

Fig. 7 Tube model
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5 Results and Discussion

5.1 Comparison of Experiment and Simulation

5.1.1 Fluid-elastic Instability Results. In this work, four kinds
of tube arrangement with two pitch ratios P/d were tested in the

water tunnel. Figure 11 shows the RMS value versus the flow gap
velocity with P/d¼ 1.4. The rotated square array is the most likely
to fall into an unstable state in water flow. But Nakamura showed
fluid-elastic instability in the rotated square array is hard to occur
in transverse direction according to his experiment in wind tunnel
[23]. And in tube arrays with P/d¼ 1.28 and 1.4, fluid-elastic
instability occurs in the transverse direction, which could be found
in Figs. 11(b) and 12(b). It is obvious that damping-controlled
instability can occur in the transverse direction in a rotated square

Fig. 8 Simulation tube arrays

Fig. 9 Grids independence check: (a) local grid, (b) CL and CD, and (c) RMS displacements

Fig. 10 Unit tube cell: (a) normal square array, (b) rotated
square array, (c) normal triangular array, and (d) rotated triangu-
lar array

Table 1 Inlet velocity

Tube array Reynolds number Inlet velocity (m/s)

Normal square array 12,500 0.143
18,250 0.214

Rotated square array 12,500 0.202
18,250 0.303

Normal triangular array 12,500 0.143
18,250 0.214

Rotated triangular array 12,500 0.171
18,250 0.247
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array. This kind of tube array is easier to be unstable in water and
more stable in air than other kinds of tube arrays.

In normal square arrays, the fluid-elastic instability is more
likely to happen in the transverse direction than the streamwise
direction. The trend is almost the same as the rotated triangular
array. In triangular array (Fig. 11(d)), as the increase in reduced
velocity, the RMS deplanement increased, then dropped a little,
and increased rapidly after Ur is higher than 3.2. This can be
caused by vortex shedding and fluid-elastic instability together.
The results of tube arrays with P/d¼ 1.28 are shown in Fig. 12.
This phenomenon still exists but is not so significant. In the spec-
trum of experimental displacements of normal triangular array at
Ur¼ 2.5 (P/d¼ 1.4) (Fig. 13), two obvious peaks could be found.
The peak at about 15 Hz is the response frequency of FEI response
and the peak at about 18 Hz is vortex shedding frequency. There-
fore, in a triangular array, critical velocity can be influenced by
vortex shedding when the tube bundles are not close-packed. The
streamwise direction result shows almost the same trend but the
amplitude is much lower than that of transverse direction.

The tubes tend to vibrate with the easiest mode. If the fluid-
tube system natural frequencies of the streamwise and transverse
directions are the same, the rotated square array and rotated trian-
gular array is more likely to vibrate in the mode dominated in the
streamwise direction than other tube arrays. The streamwise fluid-
elastic instability can occur before that in the transverse direction
only in some special condition. The velocity vector maps in flexi-
ble tube array at low velocity (Re around 8000) are shown in
Fig. 14. Vortex shedding obviously exists in all tube arrays. The
flow paths in the rotated square array are almost the same in the
streamwise and transverse direction. This can result in close criti-
cal velocities of two directions. The flow paths of the normal

square array are almost straight and this makes it not easy to cou-
pling in the streamwise direction.

In most of the tube arrays, critical velocity in tube bundles with
pitch ratio P/d¼ 1.4 is larger than that of tube bundles with
P/d¼ 1.28. Compared with relevant experiments, the results are
reasonable. Many researchers have given suggestions on the selec-
tion of instability coefficient K with different pitch ratios, and crit-
ical velocity data in this work and other reported results [24–26]
are depicted in Fig. 15.

The experimental results are close to the enveloping line of
Chen [24]. The trend of the rotated triangular array and normal
square array are almost the same. In the rotated triangular array,
the critical velocity in this experiment is quite close to the envel-
oping threshold of Chen SS. Thus, the experimental results in this
work are reliable and match well with the CFD simulation results.

More FSI simulations of tube arrays with P/d¼ 1.4 in two-
phase flow were conducted, and the critical velocity is shown in
Table 2. Streamwise instability occurs only in the rotated triangu-
lar array and the rotated square array in air–water flow of 0.8 void
fraction. The critical velocity in the rotated square array is larger
than that in the rotated triangular array. The time-domain dis-
placements are shown in Fig. 16, in which a stable phase coupling
was performed in the streamwise direction. Another information
is that the mass damping parameters are all larger than 1, which
means the instability can be stiffness controlled.

5.1.2 Fluid Force Coefficients. The results presented in this
section are based on CFD simulations conducted over a range of
reduced velocities between 0.1 and 100 using the same Reynolds
number with relevant works of literature. Comparison with the

Fig. 11 RMS amplitude (P/d 5 1.4): (a) normal square array, (b) rotated square array, (c) normal triangular array,
and (d) rotated triangular array
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experimental results of Tanaka and Chen are shown in Fig. 17
[13].

The experiments of Tanaka and Chen were carried out at
P/d¼ 1.375, while the simulation was 1.4 in this work, which can
be very close. The simulation trend matches well with the experi-
mental data of Chen and Tanaka. In the MDP range around 5, the
simulation results seem to have some differences with the reported
experiments, which may result from the difference of P/d. When
Ur is greater than 20, the stiffness coefficients and damping coeffi-
cients are almost independent of Ur. This can be found in both in-
line and staggered tube arrays.

Therefore, more attention has been paid in the region Ur< 20
in this work. The coefficient data, as a function of the reduced

flow velocity Ur, were then utilized to predict the stability thresh-
old as a function of the mass damping parameter. The predicted
results match well with the average trend of experimental data in
both inline and staggered tube arrays. In Fig. 18(a), the predicted
threshold is close to the lowest value of the experimental data of
in-line array. The changing trend of stability threshold is well pre-
dicted in Fig. 18(b) by the data in this work in a staggered array.
On the whole, the simulation and the experimental results agree
quite well.

5.2 Effect of Reynolds Number. In Fig. 19, the simulation
fluid force coefficients are compared with the experimental data
[27,28]. It can be found that Re has a negative effect on fluid force
coefficients, which has also been proved by Hassan et al. [22] and
Chen et al. [27]. Higher Reynolds number results in lower values
of the fluid force coefficients. As the increase in reduced velocity,
the fluid force coefficient decreases sharply with the reduced
velocity from 0 to 5. In Fig. 19(a), pitch ratio P/d of the square
arrays herein is 1.4, which is almost the same as the experiment of
Chen. With the increase in Re in the lower Ur region, the max
value of damping coefficients increases and then drops to a very
low value. When Ur is lower than 2, a little difference trend of
damping coefficients can be found between the results of this
work and Chen. Meanwhile, it matches well with the data of
Tanaka.

In triangular array (Fig. 19(b)), the damping coefficients follow
the same trend of the square array. The change of the damping
coefficients at these two Re values is not as large as the former
although the amplitude of Re variation is much larger. When it
comes to the stiffness coefficients, the conclusion can also be
found in Figs. 19(c) and 19(d).

Fig. 12 RMS amplitude (P/d 5 1.28): (a) normal square array, (b) rotated square array, (c) normal triangular
array, and (d) rotated triangular array

Fig. 13 Experimental spectrum of tube displacements
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The predicted critical velocity based on unsteady flow theory as
the function of MDP, shown in Fig. 20, fits well with the trend of
the reported experimental data and the results from CFD and
water tunnel test in this work. The data point from this work with
MDP lower than 1 is the result of water tunnel test, while the other
data point in this work is FSI simulation results. The reported
experiments are conducted under different P/d and Reynolds num-
bers. The data points of this work are with P/d¼ 1.4, and the
Reynolds numbers vary from 10,000 to 20,000. The predicted crit-
ical velocity matches well with data in this work and fits well with
the average trend of the reported data.

As is discussed by Tanaka, the effect of damping term mainly
dominates in lower mass damping area which results in a turning
of the line [11,28]. The stiffness effect will be dominant as the
MDP increases. In Fig. 20, as the increase in Reynolds numbers,
the turning point becomes lower. Therefore, the higher Reynolds
number can result in the earlier dominant trend of stiffness effect.
The increase in Reynolds number can have a positive effect on
stiffness effect.

In Fig. 20(a), the predicted critical velocity is lower than the
data point when mass damping parameters are lower than 1 in this
work in the normal square array. Although the Reynolds number
is close to 18,500, the model underestimates the critical velocity.
This is the same as the conclusion of Hassan et al. [6]. In the nor-
mal triangular array, shown in Fig. 20(b), the trend of critical
velocity change caused by Reynolds number is similar. The turn-
ing point can be found around 0.5, which is lower than the normal
square array.

As is mentioned in the former part, the streamwise instability is
easier to occur at MDP higher than 1. That means as the effect of
stiffness term becomes larger, the streamwise instability is more
likely to occur. If the MDP is lower than 1, as the fluid damping
effect is more significant, higher Re value at the threshold can be

expected. In turn, the critical velocity in streamwise direction can
be much higher than the transverse direction.

In Fig. 21, fluid force coefficients (Ur¼ 5) are shown as a func-
tion of Re. The damping fluid force coefficients are not stable
when Ur is less than 5. The pattern of the change caused by Reyn-
olds number is not as stable in a square array as in the triangular
array. As shown in Fig. 22, with the increase in Reynolds number,
the fluid stiffness coefficients turn to be a constant value. That
means the effect of Re is lower, and the predicted critical veloc-
ities of two higher Re will be closer, which can be found in the
result of Hassan.

5.3 Effect of Tube Arrangement. The fluid force coeffi-
cients can be affected by tube arrangement. The critical velocity
as the function of MDP is shown in Fig. 23. Although the influ-
ence of tube arrangement could not be easily described, some
trends agree well with the experimental results. The critical veloc-
ity in the rotated triangular array can be lower than the normal
square and triangular array but will become higher as MDP
increases. This agrees well with the data by CFD simulation and
experiment in Table 2. The critical velocity in square tube arrays
can be larger than the other tube arrays when MDP is below 1 but
will become smaller when MDP is larger than 1.

The turn caused by the change of stiffness effect and damping
effect can be easily defined in Fig. 23. The turning MDP point of
the triangular array is around 0.5, which is the lowest while other
arrays are around MDP value of 1. This was not mentioned in
Hassan’s results because more attention was paid in MDP range
larger than 1.

The effect of Re on the predicted instability threshold based on
unsteady flow theory has already been mentioned in many
researches. But the exact effect of Reynolds number with the

Fig. 14 Velocity vector in tube arrays: (a) normal triangle array, (b) rotated triangle array, (c)
normal square array, and (d) rotated square array
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change of tube arrangements has not been discussed in detail. The
unsteady modeling results of the tube arrays, reported experimen-
tal results, as well as the recommended threshold of Chen are
shown in Fig. 24.

Compared with the experimental results, the critical velocity
prediction of unsteady modeling matches well with the experi-
mental and simulation data. In all tube arrays, as the increase in
Re, the predicted critical velocity will be higher, which has also
been proved by many researchers. Meanwhile, the turning MDP
point becomes lower as the increase in Reynolds number. It also
means the stiffness effect became larger as Re increases, although
the effect of the damping terms on the stability is more pro-
nounced at a low mass damping parameter.

The effect of Re change on critical velocity is more significant
in the rotated square array than the square array. In the rotated tri-
angular array, the effect of Re on critical velocity can be the most
significant. As the Re of the data point in this work is about
18,500 and its MDP is lower than 1, unsteady modeling of critical
velocity in the normal triangular array is the most underestimated.

As is depicted in Fig. 24(a), in the square array, the experimen-
tal data are quite close to Tanaka’s predicted critical value. Pre-
dicted velocities under Re¼ 12,500 are lower than experimental
and simulation values. The results of the rotated triangular array
(Fig. 24(d)) are similar to the normal square array. The results pre-
dicted based on Re¼ 18,250 overvalued the critical velocity
according to the experimental data and Chen’s recommend value
with mass damping parameters lager than 1. But in the two kinds
of in-line array, the unsteady models do not underestimate the crit-
ical velocities too much when using data of corresponding Re.

The rotated square array is the only tube array with one recom-
mended K value in the whole MDP region of Chen. In Fig. 24(b),

it could be found that the recommended results are between the
two unsteady modeling results based on different Re values. In
Fig. 24(c), as the increase in Re, the turning point is lower in the
triangular array. But the influence of Re on critical velocity is not
as notable as that in the rotated triangular array. When mass
damping parameters are lower than 1, the predicted critical veloc-
ities using fluid coefficients at Re¼ 18,250 are close to the experi-
mental data, CFD simulation results, and Chen’s enveloping line.

However, as the mass damping parameter is larger than 1, the
results based on Re¼ 12,500 are closer to Chen’s recommend
value and experimental data. The critical velocity prediction in

Fig. 15 Critical velocity comparison: (a) normal square array, (b) rotated square array, (c) normal triangle array,
and (d) rotated triangle array

Table 2 Critical velocity P/d 5 1.4

Critical velocity

Tube arrangement Transverse Streamwise

Water Normal square 2.21 —
Rotated square 1.97 —

Normal triangular 3.85 —
Rotated triangular 2.06 —

Air–water (0.5) Normal square 2.58 —
Rotated square 2.94 —

Normal triangular 3.68 —
Rotated triangular 3.69 —

Air–water (0.8) Normal square 3.31 —
Rotated square 3.32 8.84

Normal triangular 5.16 —
Rotated triangular 4.42 7.37
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whole MDP range using unsteady flow theory requires selection
of fluid force with properly high Re values, especially in low
MDP range.

5.4 Effect of Frequency Ratio. In the practical heat
exchanger, such as steam generators, the tube stiffness of two
directions may not always be the same. This can cause some
effects on the in-plane instability. Hassan and Weaver have stud-
ied the influence of frequency ratio fs/ft decrease on fluid-elastic
instability in the streamwise direction in rotated triangular array

[4]. As it is not easy to control the stiffness of tube in the water
tunnel test, the CFD method was implemented to get the dynamic
response of the square tube arrays and rotated triangular arrays
with P/d¼ 1.4.

In water flow, no streamwise instability has been found in the
two kinds of arrays. It has been widely known that fluid-elastic
instability cannot occur in the streamwise direction in the normal
square array. As is shown in Fig. 25, with the decrease in fre-
quency ratio, the critical velocity in transverse direction increases
first, but then tends to be stable when the frequency ratio dropped

Fig. 16 Phase relationship for tube motion: (a) transverse response time trace (Ur 5 4.42) and (b) streamwise
response time trace (Ur 5 7.37)

Fig. 17 Fluid force coefficients comparison: (a) damping coefficients in square array [13], (b) stiffness coeffi-
cients in square array [13], (c) and (d) damping coefficients in normal triangular array [13]
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below 0.8. The difference of the frequency of tubes is proved to
have a negative effect on the coupling of tubes by Tanaka et al.
[28]. For a certain tube array, the input energy dissipated in
streamwise direction can increase as the displacements became
larger, which can result in less energy input in transverse direc-
tion. Therefore, the increase in critical velocity in transverse
direction can also be explained. In the rotated triangular array, the
increase in critical velocity is not so obvious as that in the normal
square array.

In the two-phase flow, the critical velocity ratio as the function
of frequency ratio fs/ft is shown in Fig. 26; the critical velocity in
streamwise direction decreases as the frequency ratio drops, the
trend of which is the same as Hassan and Weaver. The change of
critical velocity can be quite complex in the frequency ratio range
of 0.8–1.0, which has also been found by Hassan and Weaver [4]
in the rotated triangular array by their time-domain model. When
frequency ratio is lower than 0.8, the critical velocity ratios are
higher than Hassan’s. The reason can be the difference of mass

Fig. 18 Critical velocity as function of MDP: (a) in-line array and (b) staggered array

Fig. 19 Fluid force coefficients in tube arrays with different Re values: (a) damping coefficients—normal
square array, (b) damping coefficients—triangular array, (c) stiffness coefficients—normal square array, and (d)
stiffness coefficients—normal triangular array
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damping parameters between the two studies. As the MDP in his
research is about 50, which is much larger than this work, the
effect of system stiffness change can be more significant.

A single flexible tube in square and rotated triangular array can-
not fall into streamwise instability [9,29]. In the research of Vio-
lette et al. [29], streamwise fluid-elastic instability cannot occur in
the single flexible column tubes in the rotated triangular array.
That means the effect between columns has an important effect on
the streamwise FEI. In the rotated triangular array, the four
adjacent tubes in the streamwise direction (tubes 3–6 shown in

Fig. 10) can have some effects on the streamwise instability. The
change of the force ratio may affect the vibration mode of tube
unit cell with the seven tubes, and then the FEI in the streamwise
direction would happen earlier than that in the transverse
direction.

Conclusions

In this work, water tunnel experiments and CFD simulation
were implemented to analyze fluid-elastic instability of four kinds

Fig. 20 Critical velocity with different Re values: (a) normal square array and (b) normal triangular array

Fig. 21 Re effect on damping coefficients (Ur 5 20): (a) normal square array and (b) normal triangular array

Fig. 22 Re effect on stiffness coefficients (Ur 5 5): (a) normal square array and (b) normal triangular array
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of tube arrangement with pitch ratio of 1.28 and 1.4. Using fluid
force coefficients calculated by CFD simulation, unsteady flow
modeling of FEI was established. The effect of Reynolds number
and tube arrangement on the critical velocity and fluid force coef-
ficients was analyzed. Some conclusions can be drawn as follows:

(1) When making prediction of a certain tube array, the appli-
cation of fluid force coefficients under low Reynolds num-
ber can lead to the underestimation of critical velocity in
low mass damping parameter tube arrays. In staggered
arrays, when MDP is lower than 1, the critical threshold

according the force coefficients of the corresponding Re
can still be underestimated.

(2) As Reynolds number increases, the fluid force coefficients
turn to decrease, and the increasing trend becomes gentle.
Critical velocities predicted under two higher Reynolds
number can be closer.

(3) Only in a rotated square array and rotated triangular array,
streamwise instability was found in two-phase flow FSI
simulation, when mass damping parameter is larger than 1.
At this MDP, the stiffness-controlled instability can be
more pronounced.

Fig. 23 Critical velocity of different tube arrangements
(Re 5 12,500)

Fig. 24 Critical velocity prediction: (a) normal square, (b) rotated square, (c) normal triangular, and (d) rotated
triangular

Fig. 25 Critical velocity in transverse direction
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(4) In the rotated triangular array, the transverse instability
appears ahead of streamwise instability. However, as the
frequency ratio decreases to below 0.8, streamwise instabil-
ity critical velocity can be much lower, which can make the
streamwise instability occur earlier than that of transverse
direction. Through the comparison with reported data, this
effect can be influenced by MDP.

Nomenclature

d ¼ outside diameter, m
fn ¼ natural frequency, Hz
m ¼ tubes’ mass per unit length, kg/m

MDP ¼ mass damping parameters
P ¼ pitch

P/d ¼ pitch ratio
Re ¼ Reynolds number
Uc ¼ critical velocity, m/s

Ucr ¼ reduced critical velocity
Ur ¼ reduced velocity

VIPS ¼ visual image processing system
a, b, s, r ¼ added mass coefficient
a0, b0, s0, r0 ¼ damping coefficient

a00, b00, s00, r00 ¼ stiffness coefficient
d ¼ logarithmic attenuation rate
q ¼ density of fluid, kg/m3
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